1-Wire home automation tutorial from linux.conf.au 2019, part 3

Share

This is the third in a set of posts about the home automation tutorial from linux.conf.au 2019. You should probably read part 1 and part 2 before this post.

In the end Alistair decided that my home automation shield was defective, which is the cause of the errors from the past post. So I am instead running with the prototype shield that he handed me when I started helping with the tutorial preparation. That shield has some other bugs (misalignments of holes mainly), but is functional apart from that.

I have also decided that I’m not super excited by hassos, and just want to run the orangepi with the OWFS to MQTT gateway into my existing home assistant setup if possible, so I am going to focus on getting that bare component working for now.

To that end, the gateway can be found at https://github.com/InfernoEmbedded/OWFS-MQTT-Bridge, and is a perl script named ha-daemon.pl. I needed to install some dependancies, which in my case were for armbian:

$ apt-get install perl libanyevent-perl cpanminus libdist-zilla-perl libfile-slurp-perl libdatetime-format-strptime-perl
$ dzil listdeps | cpanm --sudo

Then I needed to write a configuration file and put it at ha.toml in the same directory as the daemon. Mine looks like this:

[general]
	timezone="Australia/Sydney"
	discovery_prefix="homeassistant"

[1wire]
	host="localhost"
	port=4304
	timeout=5 # seconds, will reconnect after this if no response
	sensor_period=30 # seconds
	switch_period=10 # seconds
	debug=true

[mqtt]
	host="192.168.1.6"
	port=1883

Now run the gateway like this:

$ perl ha-daemon.pl

I see messages on MQTT that a temperature sensor is being published to home assistant:

homeassistant/sensor/1067C6697351FF_temperature/config {
	"name": "10.67C6697351FF_temperature",
	"current_temperature_topic": "temperature/10.67C6697351FF/state",
	"unit_of_measurement": "°C"
}

However, I do not see temperature readings being published. Having added some debug code to OWFS-MQTT, this appears to be because no temperature is being returned from the read operation:

2019-05-27 17:28:14.833: lib/Daemon/OneWire.pm:73:Daemon::OneWire::readTemperatureDevices(): Reading temperature for device '10.67C6697351FF'
[...snip...]
2019-05-27 17:28:14.867: /usr/local/share/perl/5.24.1/AnyEvent/OWNet.pm:117:Daemon::OneWire::__ANON__(): Read data: $VAR1 = bless( {
                 'payload' => 0,
                 'size' => 0,
                 'version' => 0,
                 'offset' => 0,
                 'ret' => 4294967295,
                 'sg' => 270
               }, 'AnyEvent::OWNet::Response' );

I continue to debug.

Share

1-Wire home automation tutorial from linux.conf.au 2019, part 2

Share

For the actual on-the-day work, delegates were handed a link to these instructions in github. If you’re playing along at home, you should probably read 1-Wire home automation tutorial from linux.conf.au 2019, part 1 before attempting the work described here. Its especially important that you know the IP address of your board for example.

Relay tweaks

The instructions are pretty self explanatory, although I did get confused about where to connect the relay as I couldn’t find PC8 in my 40 pin header diagrams. That’s because the shields for the tutorial have a separate header which is a bit more convenient:

GPIO header

I was also a bit confused when the relay didn’t work initially, but that turns out because I’d misunderstood the wiring. The relay needs to be powered from the 3.3v pin on the 40 pin header, as there is a PCB error which puts 5v on the pins labelled as 3.3v on the GPIO header. I ended up with jumper wires which looked like this:

Cabling the relay

1-Wire issues

Following on the tutorial instructions worked well from then on until I tried to get 1-Wire setup. The owfs2mqtt bridge plugin was logging this:

2019-04-08 19:23:55.075: /opt/OWFS-MQTT-Bridge/lib/Daemon/OneWire.pm:148:Daemon::logError(): Connection to owserver failed: Can't connect owserver: Address not available

Debugging that involved connecting to the owfs2mqtt docker container (hint: ssh to the Orange Pi, do a docker ps, and then run bash inside the docker container for the addon). Running owserver with debug produces this:

owserver fails

Sorry to post that as an image, cut and paste for the hassos ssh server doesn’t like me for some reason. I suspect I have a defective DS2482, but I’ll have to wait and see what Allistair says.

Share

1-Wire home automation tutorial from linux.conf.au 2019, part 1

Share

I didn’t get much of a chance to work through the home automation tutorial at linux.conf.au 2019 because I ended up helping others in the room get their Orange Pi is booting. Now that things have settled down after the conference, I’ve had a chance to actually do some of the tutorial myself. These are my notes so I can remember what I did later…

Pre-tutorial setup

You need to do the pre-tutorial setup first. I use Ubuntu, which means its important that I use 18.10 or greater so that st-link is packaged. Apart from that the instructions as written just worked.

You also need to download the image for the SD card, which was provided on the day at the conference. The URL for that is from github. Download that image, decompress it, and then flash it to an SD card using something like Balena Etcher. The tutorial used 32gb SD cards, but the image will fit on something smaller than that.

hassos also doesn’t put anything on the Orange Pi HDMI port when it boots, so your machine is going to look like it didn’t boot. That’s expected. For the tutorial we provided a mapping from board number (mac address effectively) to IP address allocated in the tutorial. At home if you’re using an Orange Pi that isn’t from the conference you’re going to have to find another way to determine the IP address of your Orange Pi.

The way we determined MAC addresses and so forth for the boards used at the conference was to boot an Armbian image and then run a simple python script which performed some simple checks of each board by logging into the board over serial. The MAC addresses for the boards handed out on the day are on github.

An Aside: Serial on the Orange Pi Prime

As an aside, the serial on the Orange Pi Prime is really handy, especially with the hassos image. Serial is exposed by a three pin header on the board, which is sort of labelled:

Orange Pi Prime Serial Port
The Orange Pi Prime Serial Port

Noting that you’ll need to bend the pins of the serial header a little if you’re using the shield from the conference:

Serial port connected to a USB to serial converter

The advantage being that suddenly you get useful debugging information! The serial connection is 115200 baud 8N1 (8 data bits, no parity, 1 stop bit) by the way.

Serial debug information from an hassos boot

The hassos image used for the conference allows login as root with no password over serial, which dumps you into a hass interface. Type “login” to get a bash prompt, even though its not in the list of commands available. At this point you can use the “ip address” command to work out what address DHCP handed the board.

The actual on-the-day work

So at this point we’re about as ready as people were meant to be when they walked into the room for the tutorial. I’ll write more notes when I complete the actual tutorial.

Share